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The quasi-laminar model for the transfer of energy to a surface wave from a turbulent 
shear flow (Miles 1957) is modified to incorporate the wave-induced perturbations of 
the Reynolds stresses, which are related to the wave-induced velocity field through the 
Boussinesq closure hypothesis and the ancillary hypothesis that the eddy viscosity is 
conserved along streamlines. It is assumed that the basic mean velocity is 
U(z) = ( U,/K) log (z/z,) for sufficiently large z (elevation above the level interface) and 
that U(z,) 9 U,  for kz, = 0(1), where k is the wavenumber. The resulting vorticity- 
transport equation is reduced, through the neglect of diffusion, to a modification of 
Rayleigh’s equation for wave motion in an inviscid shear flow. The energy transfer to 
the surface wave, which comprises independent contributions from the critical layer 
(where U = c, the wave speed) and the wave-induced Reynolds stresses, is calculated 
through a variational approximation and, independently, through matched asymptotic 
expansions. The critical-layer component is equivalent to that for the quasi-laminar 
model. The Reynolds-stress component is similar to, but differs quantitatively from, 
that obtained by Knight (1977), Jacobs (1987) and van Duin & Janssen (1992). The 
predicted energy transfer agrees with the observational data compiled by Plant (1982) 
for 1 ;S c / U ,  5 20, but the validity of the logarithmic profile for the calculation of the 
energy transfer in the critical layer for c / U ,  < 5 remains uncertain. The basic model 
is unreliable (for water waves) if c / U ,  5 1, but this domain is of limited oceanographic 
importance. It is suggested that Kelvin-Helmholtz instability of air blowing over oil 
should provide a good experimental test of the present Reynolds-stress modelling and 
that this modelling may be relevant in other geophysical contexts. 

1. Introduction 
Some thirty-five years ago, I constructed a quasi-laminar model (Miles 1957, 

hereinafter referred to as I) for the transfer of energy from a shear flow to a surface 
wave in which turbulence is implicitly included through a prescribed velocity profile 
but viscous stresses and the wave-induced Reynolds stresses are neglected.? Viscous 
stresses have been incorporated in this model (Benjamin 1959; Miles 1959~) and are 
important for those relatively short waves for which resonance with Tollmien- 
Schlichting waves is possible (Miles 1962), but they are negligible for the long waves 
to be considered here. The incorporation of the wave-induced Reynolds stresses in the 
equations of motion is straightforward (see the Appendix in I), but their expression in 
terms of the wave-induced velocity field requires ad hoc modelling for which direct 
observational confirmation is as yet unavailable. Many such models have been 

t See Phillips (1957, 1977) and Miles (1960) for the development of a complementary model that 
describes the direct effects of turbulent fluctuations in pressure on the surface wave and is relevant 
for the initial stages of wave generation. 
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developed during the past twenty-five years; guided by these models, I revisit the 
problem with the purpose of incorporating the wave-induced Reynolds stresses in a 
modification of the Rayleigh equation that governs the quasi-laminar model. 

I consider a turbulent shear flow with the mean velocity profile U(z) over the wave 

in a reference frame moving in the x-direction with the wave speed c = (g/k) i .  The 
formulation may be extended to an obliquely moving wave through Squire’s 
transformation (Drazin & Reid 1981). I assume that 

U(z)  = U,ln(z/z,), U, E U*/K (1.24 b) 

z = a cos kx = h,(x) (ka @ 1) (1.1) 

(U,  is the friction velocity and K is von Karman’s constant) for sufficiently large z,  

\ ka < 1, kz, < 1, k D +  1, e’u’<J!L<l,  
- v v-c (1.3a-d) 

where z, is the elevation of the critical layer, at which U(zc) = c, D is the depth of the 
turbulent boundary layer, V =  U(zl), and kz, = O(1). The profile (1.2) may be 
continued to the surface-wave interface, where U = 0, by replacing z by z+zo, which 
implies U+ U,  z/zo as z 4 0;  however, the present formulation is valid for any constant- 
stress (uU’ = U i  for z > 0) boundary layer. 

In the quasi-laminar model of I, the energy transfer to the surface wave is associated 
with a singularity at the critical layer and is described by 

(kcE)-l(aE/at) = s ~ ( U J C ) ~  = (T, p = -n(U; /kU;) ($ /U;g)  = p,, (1.4a, b) 
where E is the wave energy, the overbar signifies an average over x , s  = p,/p, is the 
air-water density ratio, U, is the reference velocity (1.2b), the subscript c implies z = z,, 
and w, is the vertical velocity at the critical layer. 

If the wave-induced turbulent fluctuations are retained in the equations of motion 
and the O(ka) components thereof averaged in the transverse ( y )  direction, the 
transport equation for the wave-induced vorticity o (2.4) may be placed in the form 
(Miles 1967) 

where u’ and w’ are the x- and z-components of the turbulent velocity fluctuation, and 
( ) signifies an average over y .  If R is neglected, as in the quasi-laminar model, (1.5) 
is equivalent to Rayleigh’s equation, and its solution leads to (1.4). If R =+ 0 and c < 1 
(1.4b) remains valid for the energy transfer associated with the critical layer, but there 
is an additional energy transfer associated with the wave-induced Reynolds stresses. 

Further progress requires a closure hypothesis for the determination of R. Attempts 
(see Miles 1967) to express R directly in terms of the wave-induced vorticity through 
mixing-length or similarity arguments were unsuccessful, and it seems clear in 
retrospect that any first-order closure model should start from the Reynolds-stress 
tensor. The first such models were those of Davis (1972, 1974) and Townsend (1972). 
These were followed by the studies of Chalikov (1976, 1978), Gent & Taylor (1976), 
Gent (1977) and Al-Zanaidi & Hui (1984), all of which (like those of Davis and 
Townsend) culminate in numerical integrations, and those of Knight (1977), Jacobs 
(1987) and van Duin & Janssen (1992), who invoke the Boussinesq closure hypothesis? 

t This description for the direct construction of the Reynolds-stress tensor appears to enjoy wide 
acceptance in the current literature of turbulence, but it is worth recalling that Boussinesq (1877) 
simply posited an eddy viscosity in the Navier-Stokes equations without any direct reference to 
turbulent fluctuations or Reynolds stresses. 

D @ / D ~  = a, a z < w / 2  - t ~ )  + (a: - a;) ( u w )  = R, (1 5)  
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and construct analytical solutions through matched asymptotic expansions to obtain 

/ ? , = 2 K 2 ( y ) ,  Y =  u(l/k), (1.6a, b) 

for the energy-transfer coefficient (defined as in (1.4~)) for the logarithmic profile (1.2). 
Each of these models has provided valuable insights and bases for further progress, but 
only those of Jacobs and van Duin & Janssen come close to the desideratum of a 
counterpart for the Orr-Sommerfeld equation or, absent diffusion, Rayleigh’s 
equation. 

The simplicity of Knight’s result (1.6) suggests a more direct connection with the 
underlying physics than is provided by his matched-asymptotic solution or those of 
Jacobs and van Duin & Janssen. Moreover, I find, through a variational approximation 
(8 5) and, independently, through matched asymptotic expansions (Appendix C), that 
their reference velocity (1.6b) should be replaced by 

(cf. (1.4)) 

V =  U(zl) = 2k e-2kzU(z)dz, kz, = ie-7 = 0.281 (1.7a, b) 

(y = 0.577 is Euler’s constant). The adoption of Y = U(l/k) ,  rather than U(zl), yields 
a value of /?, that is too high by - 2 ~ * ( y  + In 2) = 0.406. 

Each of Knight, Jacobs and van Duin & Janssen neglects the energy transfer 
associated with the phase shift across U = c,  which is given by (1.4) in the present 
approximation. This neglect is justified if the critical layer (z = zc) lies within a sublayer 
of negligible profile curvature, but this condition is not satisfied throughout the 
parametric domain ( E  4 1) in which their models are viable. 

The Boussinesq closure hypothesis must be supplemented by the explicit prescription 
of an eddy viscosity v. This phenomenological construct is given by v = Ui /U’  in a 
constant-stress boundary layer and by KU,  z for the logarithmic profile (1.2), but some 
additional hypothesis is required for its determination in the perturbed flow. Knight 
(1977) adopts Saffman’s (1970) two-equation model of turbulent flow, which contains 
five empirical (but constrained) parameters ; however, Knight’s approximation (1.6) is 
independent of these parameters. Jacobs (1987) generalizes v = K U ,  z for the basic flow 
(1.2) by positing (cf. Davis 1970) v = U,  t‘,, where t‘, = ~ ( z - h , )  is a mixing length 
and z-h,  is the elevation above the surface wave. Van Duin & Janssen (1992) 
include a viscous sublayer (as also do Al-Zanaidi & Hui 1984) and posit 
v = U,t,lt, U’(z)/U,l”, where n is an integer. This reduces to v = KU,[z-(n+ 1)h,] 
for the logarithmic profile, and their end result for the energy-transfer coefficient is 
/I, = P0(l +in), where Po is given by (1.6). 

The approximation t ,  = K(Z - h,) implies that the wave-induced perturbation, vl, of 
the eddy viscosity does not decay as z t  00 and leads to an inhomogeneous partial 
differential equation for the perturbation stream function; moreover, it implies v l  = 0 
for perturbed boundary-layer flows over a level boundary. Knight’s model (correctly 
in my view) implies homogeneous perturbation equations, although he does not 
display them, and that ul decays exponentially. Townsend (1972) assumes the 
equivalent of t ,  = K [ z - ~ ,  eVkr], which implies an exponential decay of v1 but 
inhomogeneous perturbation equations. I hypothesize that v = v(z - h) is conserved 
along streamlines, which implies v1 = - KU, h for the logarithmic profile, where h is the 
vertical displacement of a streamline from its position in the basic flow. This implies 

1: 

that v1 decays exponentially and leads (in 8 3) to the homogeneous vorticity-transport 
equation (cf. (1.5)) 

Dw/Dt = V2(vw) + 2[~’( U -  c)]’hXx, (1.8) 
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wherein w is the wave-induced vorticity, v = v(z) and U = U(z) are the eddy viscosity 
and mean velocity in the basic flow, and vU’ = constant is implicit; v’ = KU, is 
constant if U(z) is logarithmic. 

The Laplacian V2(vw) in (1.8) represents diffusion and may be neglected in the limit 
e J, 0 at the expense of singular behaviour at the critical layer and the relaxation of the 
no-slip condition at the interface. The explicit representation of w in terms of h then 
reduces (1.8) to 

which is the central result of the present analysis. 
It is worth emphasizing that the last term in (1.9) rests on the hypothesis v = v(z-h). 

This hypothesis is supported by an extension (Appendix A) of Nee & Kovasznay’s 
(1 969) eddy-viscosity-transport model or by Saffman’s (1970) two-equation model 
(Appendix B) if diffusion is neglected in those models. This suggests that the retention 
of V2(vw) in (1.8) may not be consistent with the hypothesis v = v(z-h), but it can be 
shown that (1.8) does provide a consistent interpolation of the solution of (1.9) across 
z = z, in the limit e + 0. 

The elimination of the x-dependence of h through separation of variables in 
(1.9) yields a second-order, ordinary differential equation that is isomorphic to the 
Taylor-Goldstein equation for a stratified shear flow with a complex buoyancy 
frequency. This differential equation admits a variational integral (9 5) ,  which I use to 
obtain approximations to the energy-transfer coefficient p. In particular, I invoke the 
logarithmic profile (1.2) and the trial function h = h,(x) e-lCz (which corresponds to 
irrotational flow) to obtain 

v * [( u- c)2 Vh] + 2[v’( u- c)]’h, = 0, (1.9) 

v- c v- c 
P = nkzc(Ty+2K2(T)  3 p,+py, (1.10) 

where V is given by (1.7) and ,8, and pv are the critical-layer and wave-induced- 
Reynolds-stress components. I confirm this result through the construction of matched 
asymptotic expansions in Appendix C. 

The total energy-transfer coefficient (1.10) agrees with the observational data 
compiled by Plant (1982) within the scatter of that data for 1 < c / U ,  < 20 (see figure 
1 below), but the validity of the logarithmic profile in the calculation of /3, for c /U ,  5 5 
is questionable. The basic model is unreliable (for water waves) if c / U ,  5 1, in which 
domain 8 (1.3d) may not remain small; however, this domain is of limited 
oceanographic importance. 

Kelvin-Helmholtz instability of air blowing over oil (Miles 1959 b), which occurs for 
rather small c /U ,  and for which the critical layer lies within a laminar sublayer of 
negligible profile curvature, should provide a good experimental test of the present 
model. I carry out the appropriate calculation in $7 and conclude that the available 
measurements (Francis 1954) are qualitatively consistent with the theory but 
inadequate for a quantitative test. 

The assumptions of a straight-crested wave (1.1) and the mean flow U(z) permit the 
formal averaging over turbulent fluctuations in the present model to be carried out in 
the transverse ( y )  direction without any restriction on the period of the surface wave 
vis-his  the spectrum of the fluctuations. But real waves and winds are not two- 
dimensional, and the duration of gusts may be of the order of minutes, in contrast to 
wave periods of the order of seconds. Whether this gustiness dominates the wind-to- 
wave energy transfer, as Nikolayeva & Tsimring (1986) and Janssen (1986) suggest, or 
whether it merely implies a slow modulation of the averages considered here, remains 
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to be determined. The essential question is whether a particular model is useful in some 
significant part of the gravity-wave spectrum, and this question can be answered only 
through comparison with observation. 

It seems likely that the principal value of the present model for practical 
oceanography lies in its basis (after empirical modifications) for wave-forecasting 
models (cf. SWAMP Group 1985). But it is worth noting that (3.7), in which the 
solenoidal force - V x (vo) is accompanied by the Clebsch-like force 2d( U-  c) Vh,, 
suggests the possibility of a corresponding, non-diffusive term in other geophysical 
models in which diffusion is parameterized through eddy-viscosity hypotheses. 

2. Kinematics 
We pose the velocity field in the form (Miles 1967) 

{ui} {u, V ,  W }  = [U(Z -h)  - c]{  1 - h,, 0, h,} + {u;(x,~, Z, t ) }  (2.1) 

{xi} = {x,y,z} ( i  = 1,2,3). (2.2) 

in the Cartesian coordinates 

U(z) is the mean velocity of the basic flow in a stationary reference frame, h is the y- 
average of the wave-induced streamline displacement, {u;} is a randomly fluctuating 
velocity, and the subscripts x and z signify partial differentiation. By hypothesis, h is 
periodic in x, and _ -  

(2.3) 
where the overbar implies an x-average and ( ) a y-average (which we subsequently 
designate as the mean). The divergence of the mean of (2.1) vanishes by construction. 

The wave-induced perturbation in the mean vorticity of a particle that experiences 
the mean vertical displacement h from its mean elevation in the undisturbed flow is 
given by 

w = (uz-w, ) -  U’(z-h)  = -(U-c)V2h-2U’hz (2.4a, b) 
to first-order in ka. In a perfect fluid this vorticity is conserved and satisfies 

h = U! = (u!) = 0, 

Dw/Dt  = ( U - C ) W ,  = -V*[(U-C)~V~,. = 0 (U = 0), (2.5) 
which is equivalent to the Rayleigh equation for the stream function $ = ( U -  c)  h. 

An alternative formulation, which is equivalent to the present formulation to first- 
order in ka and maps the streamlines on lines of constant 7 (in particular z = h, on 
7 = 0), follows from the transformation 

and 

The eddy viscosity in the perturbed flow, (3.6) below, then is v = v(q). 

(2.6a, b) 

3. Dynamics 
Substituting the velocity field (2.1) into the momentum equations for an inviscid, 

incompressible fluid, averaging over y ,  and neglecting O(ka)2, we obtain the equations 
of mean motion in the form (Miles 1967) 

D ( u ) / D t  = - ( U - C ) ~ ~ , ,  = - ( ~ / ~ ) , - ( u ’ ~ ) , - ( u ‘ w ‘ ) ,  E X  (3.1 a) 
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and D(w)/Dt = ( U - C ) ~ ~ , ,  = - (~/~) , - ( (u’w’) , - (w’~) ,  Z. (3.1 b) 
The unperturbed shear flow satisfies the boundary-layer equations 

(u’w’)~ = 0, ( p + p ~ ” ) ~  = 0 (ka = 0), (3.2~1, b) 
by virtue of which (3.1~1, b) are first order in ka. 

We now invoke the closure hypothesis (cf. Boussinesq 1877) 

wherein repeated indices are summed over 1-3 and v is the eddy viscosity?, and 

(3.4) 
introduce 

(The rate at which work is done on the wave by the normal aerodynamic stress is 
- ( U -  c)  + per unit area, by virtue of which ?r is the relevant kinematic pressure in 
the present context.) The eddy viscosity in the unperturbed flow, v(z), is determined by 
the requirement that the shear stress be constant through the boundary layer : 

Phenomenological arguments (cf. Goldstein 1938, $9 80-85) suggest, and I assume, that 
v is conserved along streamlines, and therefore may be approximated by (see also 

(3.6) 
Appendix A) 

in the limit kv/ VJ,  0. Combining (2.1) and (3.3)-(3.6) on the right-hand side of (3.1) and 
introducing the vorticity w from (2.4b), we resolve (X, 2) into solenoidal and Clebsch- 
like (cf. Lamb 1932, $167) components according to 

where V = (a,,a,),m = y l w ,  y1 is a unit vector in the y-direction, and, here and 
subsequently, v = v(z) is the eddy viscosity in the unperturbed flow. Substituting (3.7) 
into (3.1) and eliminating n, we obtain the vorticity-transport equation (cf. (2.5)) 

(3.8) 
in which V2(vo) ,  which is derived from the solenoidal component of (3.7), represents 
diffusion (its form, uis-h-uis V.(vVw), follows from the definition (2.4) and the 
constraint (3.5)), and the last term, which is derived from 2v’(U-c) Vh,, represents 
vorticity transfer between the basic and wave-induced flows. We remark that, owing to 
the invocation of vU” = -v’U‘ in its derivation, (3.8) is equivalent to the 
Orr-Sommerfeld equation only if both U’ and 

It follows from the assumptions of monochromatic motion (1.1) and linearity that 
h, o and ?r admit the representation 

[h, w,  n] = a Re(eik5[H(Y), k2VQ(y), kV217(Y)]), 5 = kz, (3.9~1, b) 
where V is a reference velocity, and H, Q and I7 are dimensionless, complex 
amplitudes. Combining (2.4b), (3.1) and (3.7)-(3.9) and introducing$ 

n = (p/p+;u;u;). 

(VU’)’ = 0 (ka = 0). (3.5) 

v = v(z - h) = v(z) - v’(2) h, 

( X ,  2) = - vn - v x (urn) + 2v’( u- c) Vh,, (3.7) 

Dw/Dt = V’(VW) + 2[d(U- c)]’hZz, 

are constant. 

u-c kv h r -  
V ’  

w(Y) = - 
V ’  

(3.10a, b) 

we obtain 17 = w2H‘+2iA’wH-i(hS2)‘, IT= w2H+2iA’wH‘-ihS2, (3.11~1, b) 
A(hQ)-iwQ-2(A‘w)’H = 0, Q = -wAH-2w’H’, (3.12a, b) 

t The molecular viscosity, which may be significant in the laminar sublayer (wherein v and U‘ are 

$ The definition ( 3 . 1 0 ~ )  for w holds throughout the subsequent development, in which the 
constant), may be included in v(z). 

dimensional vertical velocity of $2 no longer appears. 
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where, here and subsequently, ‘ = d/d[ and A = (d/do2 - 1. The corresponding 
boundary conditions, which follow from continuity of the interfacial velocity (we 
neglect surface drift, so that the horizontal velocity induced by the wave is kch,) and 
the requirement of finite energy, are 

H =  1, H‘= 1 (CJO), H-tO ([?a). (3.13 a-c) 

4. The reduced equations 
The solenoidal component of (3.7), and hence also V2(vw) in (3.8), may be neglected 

in the limit E 4 0 at the expense of singular behaviour at the critical layer, the relaxation 
of the no-slip condition (3.13 b), and an O(c2) error in l7. The corresponding reduction 
of (3.8) yields (1.9), while that of (3.11k(3.13) yields 

n= w2H’+2ih’wH, 17’ = w2H+2ih’wH’, (4.1 a, b) 

and H =  1 (<= 0), H-tO ([fa). (4.3 a, b) 
We remark that (4.2) is formally equivalent to a modified (Miles 1961) 

Taylor-Goldstein equation (Drazin & Reid 1981, 544.1) for a stratified shear flow with 
a complex buoyancy frequency. But note that, in contrast to the buoyancy force in a 
stratified flow, the pseudo-buoyancy force in (4.1) comprises both horizontal and 
vertical components and is in phase with the particle velocity rather than the particle 
displacement. 

If A’ = 0 (4.2) is equivalent to Rayleigh’s equation, to which it reduces through the 
transformation q5 = wH. The exponents of the regular singularity at w = 0 are - 1 + 2i8 
and -2i6, where 6 = 2h’/wL = 4 1, and may be approximated by - 1 and 0 (0 
and 1 for Rayleigh‘s equation) in the present context. This approximation fails in 
l[-Cc1 = O ( K ’ ~ ) ,  but the resulting error is within that already implicit in (4.2). 

Diffusion may be incorporated, as in the asymptotic solution of the Orr-Sommerfeld 
equation, by separating the solution of (3.12) and (3.13) into HI, a solution of (4.2), for 
which the lengthscale is 1 ( l /k for z), and H,, a solution of the truncated vorticity 

(w2H’)’-[w2--2i(h’w)’] H = 0, (4.2) 

equations 
(h52)” = iw0, 52 = - wH“ -2w’H‘, (4.4a, b) 

for which the lengthscale is d / k .  The contribution of H, to 17 is 0[c3(U;/kc)i] and 
therefore negligible in the present approximation. H, does introduce an interfacial 
shear stress, but the resulting dissipation is negligible compared with that in the water 
(cf. Miles 1959~). 

5. Variational formulation 
We require 17, = 17,+iIIt, as determined from (4.1 a) through the solution of (4.2) 

and (4.3). The imaginary part n,, to which the energy transfer to the wave is 
proportional, comprises contributions from the critical layer, [ = cc, and from the 
wave-induced Reynolds stresses. These contributions are small and may be calculated 
independently by neglecting (h’w)’ in (4.2) in the calculation of the critical-layer 
component 17, and neglecting the singularity at [ = cc (with all integrals regarded as 
principal values) in the calculation of 17, - 17,. Moreover, since Q 4 1, (1.3 b) in the 
present formulation, may be calculated from l7, according to (Miles 1959a, 
Appendix B, wherein a + i/3 = 17/e2) 

(5.1) 17, = inc-’gc p[ 1 + 0(c)]. 
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It then remains to calculate 170-17c, for which we proceed to obtain a variational 
approximation.? The direct calculation of Do through the matched-asymptotic 
solution of (4.2) and (4.3) is carried out in Appendix C. 

Multiplying (4.2) through by H ,  integrating over (0, co) by parts and invoking (4.1 a) 
and (4.34 b), we obtain the variational integral (cf. Miles 1959b) 

17,, = 17, + i n i  = -IOw [w2(W2 + H 2 )  + 4ih’wHH’I d<, ( 5 4  

which is stationary with respect to first-order variations of H about the true solution 
of (4.2) and (4.3). 

A simple trial function for the determination of no - is provided by the solution 
of (4.2) and (4.3) for constant h and w (irrotational flow), 

Substituting (5.3) into (5.2) and invoking the variational principle that the error in the 
variational integral is of the order of the square of the error in the trial function, we 
obtain 

H = e-c[1+ O(E)]. (5.3) 

170-ITc = (-2~~+4ih’w)e-~cd<+O(s~).  (5.4) 

W = h’ = EK2, E = u l / V 6  1, (5.5 a-c) 

lo* 
Evaluating the integral for the logarithmic profile 

which follow from (1.2) and (3.10), we reduce (5.4) to 
no - 17, = - w; + 2iA’w1 + O(s2), (5 .6~)  

where w1 = elog(lJ~,) = O(1), = ie-7 = 0.281. (5.6b, c)  
The trial function (5.3) does not comprehend the singularity at < = Q and therefore 

fails to give l7,; however, it follows from (5.1) and (5 .6~)  that 

and hence (after invoking A’ = €2) that the total imaginary part of 17 is given by 
IT, = im-2[c W: = i m z ~ c  In4 (CJQ 

1 7 i  = E2[& In4 ( C l / C C )  + 2K2 In (<l/CC)1. 

(5.7) 

(5.8) 
We remark that the O(e2) error in (5.4) is formally equivalent to that implicit in the 

reduced equations of $4 and the presumed independence of critical-layer and wave- 
induced-Reynolds-stress components of 17t ; accordingly, the improvement of the 
variational approximation (5.4) through a more flexible trial function (cf. Miles 19593) 
does not appear to be profitable. 

6.  Comparison with observation 
If the reference velocity is taken to be U, (as in I), rather than V, the energy-transfer 

parameter 17, is replaced by (cf. I) 

(6.1) 
where P c  = ~ccln4(c1/cc)> P, = 2K21n(C1/Cc) (Q 4 1). (6.2a, b) 

We restrict further consideration to fully developed rough flow, for which (I, $7) 
(6.3 a, b) 

t Z7, may be calculated from a variational integral for 9 = wH (which tends to a constant at 5 = &), 

p = e-2ni = pc +By, 

gzo/ U: = Q, 5, = Q( V , / C ) ~  ecIu1, 

as in I, $4, but the singularity in H i s  too strong to permit such a calculation from (5.2). 
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FIGURE 1. The dimensionless growth rate 2xu = 2 x ~ ~ ( U ~ / c ) ~ ,  as calculated from (6.1H6.3) for 
K = 0.4, Jz = 2.3 x and s = 1.25 x lo+, compared with Plant's (1982) compilation of obser- 
vational data. The decay of the theoretical result in U,/c  2 1 is associated with (6.3). 

where SZ = O(10-3-10-a) is Charnock's (1955) constant. Each of pc,p, and p,+p, has 
a maximum at c/Ul = 2 if SZ > 2.8 x lo+. The maximum of pc for SZ = lo-' is 3.39, 
which compares with the maximum of 3.32 obtained through numerical integration of 
the Rayleigh equation (Miles 1959~). The corresponding maximum of p, (for K = 0.4) 
is 0.87. We emphasize that the validity of the logarithmic profile for c/Ul as small as 
2 is questionable, even for rough flow (cf. Riley & Donelan 1982), and (6.2) may 
overestimate ,8, for c/Ul 5 2. 

The growth-rate parameter 2na = 2n~p(U,/c)~ (1 .4~)  is compared with Plant's 
(1982) compilation of laboratory and field data for 0.05 < U,/c < 3 in figure 1, 
following van Duin & Janssen (1992), who use [ and &'r for the present p and cr and 
choose K = 0.4, s = 1.25 x The agreement is within the scatter and $2 = 2.3 x 
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of the data for c /U ,  5 1, but the theoretical result is compromised by the possible 
overestimate of profile curvature for c /U ,  5 5 .  The corresponding results for 52 = lo-' 
are inferior by at most a factor of 2 to, and for Q = lop3 are indistinguishable from, 
those of figure 1 in U,/c 5 1. Indeed, the difference between the result in figure 1 and 
that based on p, alone, rather than p,+P,, is within the scatter of the data for 
0.07 6 U,/c 6 1 (in which range p, varies from 0.42 to 0.74 and P, from 0.70 to 2.50). 
But the result based on p, alone is significantly below the data; cf. the curve for II = 0 
in van Duin & Janssen's (1992) figure 1, which needs to be lowered by roughly a factor 
of 2 to account for the replacement of V =  U(l/k) by U(z,). 

7. Kelvin-Helmholtz instability 
Kelvin-Helmholtz instability of the interface between a parallel shear flow of a light, 

inviscid fluid and a viscous liquid (e.g. air blowing over oil) occurs for c = 0 if the wave- 
induced Reynolds stresses are neglected (Miles 19593) and may be expected to occur 
for rather small c if they are of the magnitude implied by the present model. The 
dynamical equilibrium between the aerodynamic pressure (3.9) and the pressure 
induced at the interface by the wave (1.1) moving with the wave speed c (Lamb 1932, 
3349) is 

where C: = gk-' + Tk, ( 7 4  
/I* is the density of the upper/lower fluid, v- is the kinematic viscosity of the lower 
fluid, and T is the kinematic surface tension (neglected in the preceding formulation). 

We proceed on the hypothesis that 

0 < c 4 kv-, U,, (7.3) 
adopt the approximation (5.6) for Do, and neglect 17, by virtue of c 4 U,. Expanding 
the left-hand side of (7.1) in powers of c/kv- and restoring dimensions in (5.6), we 
obtain 

-c:+2iku-c+O(c2) = s(- V2+2i~U* V)[1 +O(E')], s = p+/p-. (7.4a, 3) 

The real and imaginary parts of (7.4) imply 

C: = sV', c = s(KU*/kv-) V. (7.54 b) 

The critical wind speed and wavenumber are determined by the requirement that 
V = V(k) be a minimum; however, in testing the present aerodynamic model, it may 
be preferable to invoke the measured values of k and U ,  and compare the measured 
value of c with 

c = si(KU*/kv-) c,. (7.6) 
Francis (1954) observed air blowing over an oil for which p- = 0.875 gm/cm3, 

p- T = 34 dynes/cm and v- = 2.5 cm'/s and measured the critical values U, = 97 cm/s 
and h = 2n/k = 2 cm. These compare with the predictions U, = 93 cm/s and 
h = 1.8 cm from a variational improvement of (7 .5~)  (Miles 1959b). Francis's 
'estimated' wave speed was 'about 1 cm/s', which compares with c = 1.4 cm/s from 
(7.6), but he subsequently measured a surface drift of 0.4 cm/s (private com- 
munication), which would imply an observed c of 0.6 cm/s. Given the uncertainty in 
the observed value of c and the possibility of an increase in the effective value of v- 
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through surface contamination (although this presumably is less important for oil than 
for water), the test of the present theory provided by Francis’s experiments is at best 
marginal, and it would be desirable to have more precise measurements of c for 
somewhat smaller v-. 

I am indebted to C. A. van Duin, P. A. E. M. Janssen and W. J. Plant for the data 
in figure 1, to Paul Libby for tutorials on turbulent modelling, and to Nicholas Rott 
for (many years ago) showing me the virtues of focusing on vorticity. This work was 
supported in part by the Division of Ocean Sciences of the National Science 
Foundation, NSF Grant OCE-92-16397, and by the Office of Naval Research NOOO14- 
92-J-1171. 

Appendix A. Eddy-viscosity-transport model 
Following Nee & Kovasznay (1969), but neglecting molecular viscosity and diffusion 

in keeping with the reduced equations of 54, we posit the phenomenological transport 
equation 

wherein the first and second terms on the right-hand side represent, respectively, 
generation and decay, A and B are constants, S is a scalar invariant of the velocity- 
gradient tensor 

and G is a local lengthscale. Nee & Kovasznay choose (with minor differences in 
notation and normalization) S = U’(z)l and G = KZ, infer B = A from the requirement 
that (A 1) be satisfied by U’ = U J K Z  and v = KU* z (the logarithmic boundary layer), 
and estimate A = 0.13. 

Appropriate generalizations of S = IU’( and G = KZ in the present context are the 
magnitude of the mean vorticity (cf. Spalart & Allmaras 1992) and the mixing length 
constructed in 5 1 : 

Dv/Dt (at + ui axi) v = ASV - (B/G2) v2, (A 1) 

Ui5 = a<u,>/ax,, (A 2) 

S =  I ( U ~ - W ~ ) ~  = IU’(z-h)+Wl, G = K ( z - ~ ) .  (A 3a, b) 
Substituting (A 3 )  and B = A into (A l), neglecting vw, which is consistent with the 
neglect of diffusion in $4, and invoking U’ > 0, we obtain 

= A  U’(Z-h)v- ~ ” {  Dt [ K(Z: h J }  ’ 

This is satisfied without further approximation by v = v(z - h)  = ~‘ (2 -  h)2 U’(z - h), 
which is compatible with the assumption of constant stress in the basic flow, 
vU’ = U i  = constant, only for the logarithmic boundary layer. 

Plausible alternatives to (A 3a)  for S are the scalar norms of the velocity-gradient 
tensor, ut,, and the rate-of-strain tensor, et, = i(u, + u,,) : 

(A 5 4  
(A 5b) 

(A 6b) 

S = ( u , ~  utj); M U‘ - [( U -  C) h],, + O(h2) 

and S = (~E..E..) ;  23 23 M U’-[(U-c)h],,+(U-c)hXz+O(h2) (A 6 4  

= U’+ W -  U”h + ( U -  C) h,,, 

= U’ + w - U”h + 2( U -  C) h,,, 

wherein uii, as defined by (A 2), has been calculated from (2.1) and (A 5/6 b) follows 
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from (A 5/6a) through (2.4). Combining either (A 5b) or (A 6b) with (A 3b) and the 
linear perturbations 

u = v0+v1, Dv/Dt M ( U - C ) V , , + W V ~  = ( U - C ) ( V , + V ; ~ ) , ,  (A 7 ~ ,  b) 

and 

in (A l), neglecting v, w (as above), and invoking vo U" = - u; U' (v, U' = U: = 
constant), we obtain 

[(u-c)a,+AU'](v,+v;,h) = nAv,(U-c)h,,, (A 9) 
where n = 1 for S (A 5) or 2 for S (A 6). 

The integration of (A 9) yields 

The dominant component, - vh h, corresponds to the approximation (3.6). The 
component nAv, h, does not contribute to the energy transfer to the surface wave and 
makes only an O(e2A) contribution to the aerodynamic inertia. The remaining integral 
is negligible in the present approximation. 

Appendix B. Wave-induced viscosity from Saffman's model 
It may be objected that the assumption of z? = K(Z-h), for the lengthscale in (A 1) 

is tantamount to the approximation (3.6). This criticism, which is basically applicable 
to any one-equation transport model in which a local lengthscale is hypothesized, may 
be addressed by considering a two-equation model. Following Knight (1977), we 
consider Saffman's (1970) model, in which 

v = e/r, (B 1) 
e and 7 (Saffman's w )  satisfy the transport equations 

(B 2a, b) - De = re-eey+SV.(vVe) ,  - Dr = A y - - / 3 r 2 + d . ( v V r ) ,  
Dt Dt 

r = a(2€t, e& €ij = t(ua + u,,), A = a(u,, u& (B 3u-c) 

uij is defined by (A 2), and 01, a, p, and a are empirical constants. Substituting e = vq 
from (B 1) into (B 2 4 ,  subtracting v x (B 2b) from the result, and neglecting the 
diffusion terms (as is consistent with the reduced equations in §4), we obtain 

(B 4 4  b) Dt Dt 

It can be shown that (p- 1) yv is negligible in (B 4a) in the present approximation for 
any p- 1 = O(1); however, for simplicity, we choose p = 1 (Knight gives < p < 1). 

_ -  Dv - (r-A)v+@-l)yv = 0, - Dr = LI.r-pY/?. 

We perturb the basic flow, for which 

[ui] = [U(z), O,O], e, = HJ:, r0 = gU', v, = U i / U ' ,  (B 5 U-d) 
as in (A 5)-(A 7) to obtain (cf. (A 9)) 

[( u- c) 3% -(a- a)  U'] (v, + v; h) = (201- a) v,(U- c) h,,, (B 6 )  
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(B 7) 

the integration of which yields 

v1 = - vhh +(2&-a) voh,+. . . . 
The coefficient 2&-a = 0.5 (using Knight's & = 0.3 and a = 0.1) compares with 
nA = 0.13/0.26 for n = 1 / 2  in (A 10). The component -vh h in (B 7) agrees with that 
inferred from the assumption (3.5) that v is conserved along streamlines. The 
component (2E-a)vOh,, although of the same order of magnitude as vhh for 
kz = O(l), does not contribute to the energy transfer to the surface wave and makes 
only an O(e2) contribution to the aerodynamic inertia. 

The result (B 6), with slightly different constants, also may be derived from Jones & 
Launder's (1972) two-equation model. 

Appendix C. Matched-asymptotic solution of reduced equations 
We proceed on the assumption that w ( 5 . 5 ~ )  admits the representation 

w = wl( 1 +El  e), w1 = 6 log (&/Q) = O( l), e = log ([/t;,) = 0(1), El = € / W 1 ,  
(C 1 a-d) 

where Q = O( 1) is a scaling parameter for which, anticipating the simplification of the 
subsequent analysis, we choose the value g-7 (5.6~).  (The end results are independent 
of the initial choice of Cl.) 

We pose the outer approximation to the solution of (4.2) and (4.3b) in the form 

w ( O H ( 0  = Q(0e-S (C 2) 
and transform (4.2) to the integral equation (cf. Lighthill 1957) 

@(a = @a,+- [l  -e-'('"-Q]q(y)@(y)dy, q = ~ - ~ [ ~ ~ ' - 2 i ( h ' w ) ' w - l ] ,  

(C 30, b) 
s," 

in which is a constant and the integral is O(e). The path of integration is indented 
under the singular point at 5 = 5, 4 1. Substituting w from (C 1) into (C 3b) and 
solving by iteration, starting from @ = @m + O(e), we obtain the successive app- 
roximations 

(C 4) 
and (C 5) 

where Q(y> = e-'("-b3q-l dy = e2~E1(2$, B(0 = I [2 + e-z(v-Q] €'((r) dy, 

and El is an exponential integral (Abramowitz & Stegun 1964, $5.2). 

@/Qm = 1 -el[€($ + i ~ ' ]  + O(e2) 

@/@a, = 1 - el[€ + + e;[Q2 + Qt + B + iK2Q - K ~ ]  + O(e3), 
a, 

s 
(C 6a ,  b) 

La, 
Turning to the inner domain, t; = O(e), we transfonn (4.2) and ( 4 . 3 ~ )  to 

where 
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where Ei is an exponential integral (Abramowitz & Stegun 1964, $5.1), and a?‘ is 
Heaviside’s step function. Solving (C 7) by iteration, starting from H = 1 + O(e), we 
obtain the successive approximations 

H = 1 + W: Hh K(Q + O ( 2 )  (C 9) 

where no = w: H ;  + 2ihk wo. (C 11) 
Matching the inner expansion of the outer approximation to H provided by (C 2) 

and (C 5) to the outer expansion of the inner approximation (C 10) and invoking (C l), 

(C 12) 
we obtain 

and (C 13) 
which agrees with the variational approximation in $5 .  

Combining (C 2), (C 4), (C S), (C 9), (C 12) and (C 13), we obtain the composite 
approximation 

= wl[ 1 + i(s, K~ - m-2[c wf) - st & + O(s3)] 
no = - wf + i(ns-2[c w;t + ~ S K ~ W , )  + O(s2), 

H = { 1 - el[8‘(o +el - wt K ( 0  + [+ 2s, [( 1 - 4 )  + O(s2)} e-5. (C 14) 
Note added in proof 

Dr van Duin (private communication) does not agree with my statement, following 
(1.7a, b) above, that he and Janssen (1992) neglect the energy transfer associated with 
the phase shift across U = c. He argues that ‘on the basis of the eddy viscosity model, 
there is no such energy transfer [since] there is no phase shift because of the strong 
effect of the turbulence ’. This argument appears to reflect the transcendental smallness 
of kz, implied by their asymptotic scaling. 

Belcher & Hunt (1993) invoke a similar scaling but use a different model for the 
wave-induced Reynolds stresses. They conclude that ‘The asymptotic theory of van 
Duin & Janssen (1992) [and that of Jacobs (1987) and, implicitly, the present 
calculation of p,] leads to a growth rate that is a factor of O(l/e) too large.’ 

These conflicts merit further investigation. 
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